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Science Question: How do the nonlinear dynamics of permafrost degradation and the permafrost carbon feedback (PCF) 
in Alaska respond to environmental change, and how can artificial intelligence (GeoCryoAI) enhance the modeling and 
understanding of these complex interactions while reconciling the data dichotomy problem?
Approach: We quantify nonlinear dynamics of the permafrost carbon feedback and reconcile the multimodal data 
dichotomy with artificial intelligence (AI). We address these challenges using GeoCryoAI, an AI-driven model that 
simultaneously ingests and analyzes disparate data types to provide estimates of the state of permafrost and the 
associated cycling of CH4 and CO2 flux.

Results: The GeoCryoAI model improved predictive accuracy of ALT variations and 
spatiotemporal forecasting of CH4 and CO2 flux while providing enhanced spatiotemporal 
resolution in characterizing PCF dynamics. GeoCryoAI successfully captured abrupt thaw events 
and persistent trends that were previously underrepresented in Earth system models. 
Revelations displayed CH₄ and CO₂ emissions were higher in wetter permafrost areas and lower 
in dry upland regions. The optimized GeoCryoAI framework substantially improves the efficiency, 
scalability, and precision of simulating the PCF; namely, it enhances the ability to predict long-
term permafrost stability and the associated release of CH₄ and CO₂.
Significance: Our study establishes a new methodology for assimilating multimodal data across 
different observational platforms. We demonstrate the effectiveness of AI-driven ensemble 
learning frameworks in modeling complex permafrost-climate interactions. Our findings bridge 
gaps in Earth system models by integrating real-world data with AI-driven simulations, informing 
global climate policy.

 

 
ALT 
cm 

1800-2100 

CH4 
nmol CH4 km-2 month-1 

1996-2022 

CO2 
µmol CO2 km-2 month-1 

1996-2022 

Naïve Persistence Model    
Test RMSE 1.997 0.884 1.906 

GeoCryoAI | Teacher Forcing    
Test RMSE 1.327 0.715 0.697 
Fractional Reduction RMSE -33.55% -19.12% -63.43% 

GeoCryoAI | Multimodality    
Test MAE 0.708 0.591 0.090 
Test MSE 1.014 0.481 0.045 
Test RMSE 1.007 0.694 0.213 
Fractional Reduction RMSE -24.11% -2.94% -69.44% 

 
Table 2. Evaluation and prediction error statistics obtained during testing of the GeoCryoAI 
framework. These results are enumerated above to demonstrate the evolution of model 
development from naïve persistence baseline modeling and in situ teacher forcing (Gay et al., 
2023) to the multimodal harmonization of ALT, CH4, and CO2 with optimization and 
performance tuning for feature learning in a hybridized ensemble learning network. 
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ABSTRACT
Complex nonlinear relationships exist between the permafrost thermal state, active layer thickness, and terrestrial carbon cycle dynamics. In Arctic and boreal 
Alaska, significant uncertainties characterize the spatiotemporal rate and magnitude of permafrost degradation and the permafrost carbon feedback, with 
increasing recognition of the importance of thawing mechanisms. The challenges of monitoring sub-surface phenomena with remote sensing technology 
further complicate the issue. There is an urgent need to understand how and to what extent thawing permafrost destabilizes the carbon balance in Alaska and 
to characterize the feedback involved. In this research, we use our artificial intelligence-driven model GeoCryoAI to quantify permafrost carbon dynamics in 
Alaska. The GeoCryoAI model uses a hybridized process-constrained ensemble learning framework to simultaneously ingest, scale, and analyze in situ 
measurements, remote sensing observations, and process-based modeling outputs with disparate spatiotemporal sampling and data densities. We evaluated 
prior naïve (a) persistence and (b) teacher forcing approaches relative to (c) time-delayed GeoCryoAI simulations, yielding the following error metrics (RMSE) 
for active layer thickness (ALT), methane (CH4), and carbon dioxide (CO2), respectively: 1.997, 1.327, 1.007 cm [1963–2022]; 0.884, 0.715, 0.694 nmol 
CH4km−2 month−1 [1994–2022]; 1.906, 0.697, 0.213 µmol CO2km−2 month−1 [1994–2022]. Our approach overcomes traditional model inefficiencies and 
resolves spatiotemporal disparities. GeoCryoAI captures abrupt and persistent changes while introducing a novel methodology for assimilating 
contemporaneous information at various scales. We describe GeoCryoAI, the methodology, our results, and plans for future applications.

SCIENTIFIC SIGNIFICANCE, SOCIETAL RELEVANCE, AND RELATIONSHIPS TO FUTURE MISSIONS
The study introduces GeoCryoAI as a scalable and efficient AI-driven framework for processing large-scale environmental data. GeoCryoAI is a hybridized 
ensemble learning architecture with stacked convolutional layers and memory‐encoded recurrent neural networks. This study represents a significant 
advancement in the integration of AI with permafrost research, providing improved predictive capabilities and refining our understanding of the permafrost 
carbon feedback system while also highlighting the necessity for improved monitoring and mitigation strategies in Arctic and boreal regions. Furthermore, the 
integration of remote sensing data allowed for better quantification of carbon emissions hotspots and their spatial distribution.
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DATA SOURCES
In Situ Measurements: ALT measurements from borehole temperature data, mechanical probing, and ground-penetrating radar (ITEX; CALM; ReSALT; 
SMALT-STDM). CH4 and CO2 flux measurements were derived from the AmeriFlux and NEON flux tower networks.
Remote Sensing Observations: Synthetic Aperture Radar (SAR) from UAVSAR for measuring surface deformation and thaw subsidence. Imaging 
spectroscopy from AVIRIS-NG for detecting CH₄ and CO₂ emissions from permafrost degradation. Reanalysis climate data from ERA5 to contextualize 
atmospheric conditions and boundary layer dynamics.
Process-Based Modeling (PBM) Outputs: SIBBORK-TTE model for simulating permafrost thaw and active layer depth. TCFM-Arctic model for predicting CH₄ 
and CO₂ emissions from Arctic permafrost.
Machine Learning and AI Framework: GeoCryoAI, an AI-driven ensemble learning model, processes and synthesizes in situ, remote sensing, and modeling 
data. Utilizes stacked convolutional layers and memory-encoded recurrent neural networks for long-term forecasting and simulation. Applied Bayesian 
optimization and regularization techniques to fine-tune model performance.

TECHNICAL DESCRIPTION OF FIGURES
The flowchart elements above elucidate on the data pre-processing and assimilation methodology (i.e., data cleaning, resampling, dimensionality reduction, 
partitioning, transformation, batching) followed by model assembly and analyses (i.e., model compilation, optimization, model fitting, inverse transformation, 
evaluation, prediction, uncertainty quantification, and interpretation), expanding on previous teacher forcing methods (Gay et al., 2023). The plot panel 
illustrates the loss functions, observations, and predictions for GeoCryoAI loss functions, observations, and predictions (ALT, 1969–2022; CH4, 2003–2021; 
CO2, 2003–2021). The table presents evaluation and prediction error statistics obtained during testing of the GeoCryoAI framework.
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