

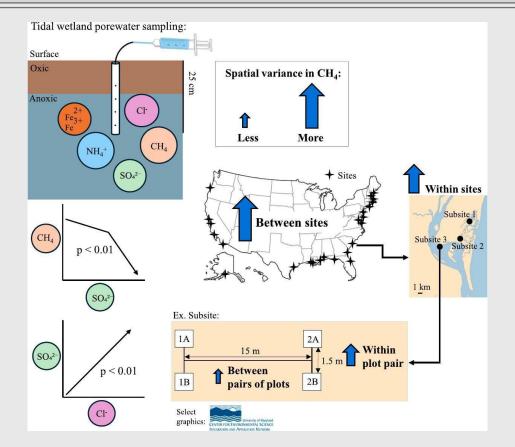
Improved "Blue Methane" Mapping for the United States Koontz, Holmquist et al. Science of the Total Environment. doi.org/10.1016/j.scitotenv.2024.177290

Science Question

- Mapping methane and understanding the processes behind its formation are important for climate action in tidal wetlands, aka 'blue carbon' ecosystems.
- We sought to determine 1. what the dominant spatial scales of variability of porewater methane concentration, and 2. what are its major predictors and proxies?

Analysis: A team of 46 researchers led by the Smithsonian, teamed up during the height of COVID-19 to remotely collaborate, collecting soil porewater samples from 27 sites across the U.S., and using a standardized spatially stratified sampling strategy.

Results


- Methane concentration varied most between sites, and along within-site gradients, less so among relative fine spatial scales.
- Sulfate concentration was the dominant predictor of porewater methane concentration.
- We documented a newly observed threshold possibly indicating effects of sulfate concentration on microbial competition for carbon sources and methane oxidation.
- Salinity is a significant proxy for sulfate concentration.

Significance:

- The study clarified that the resolution of satellite remote sensing is appropriate for scaling up ground-based data.
- Results showed robust relationships between salinity and methane concentration across diverse sites, which will improve predictive models and maps, ultimately incentivizing habitat restoration and improving greenhouse gas accounting

Acknowledgements

This research was supported by the NASA Carbon Monitoring System (NNH18ZDA001N) under NASA Award number 80NSSC20K0084.

Figure: Tidal wetland porewater was sampled consistently across 27 diverse sites in the U.S. Between-site differences and within-site gradients were the dominant spatial scales of methane variation. Sulfate concentration was the dominant predictor, and salinity was a significant proxy.