

Continuous geostationary observation of methane super-emitters

Watine-Guiu, M., D.J. Varon, I. Irakulis-Loitxate, N. Balasus, and D.J. Jacob, Geostationary satellite observations of extreme and transient methane emissions from oil and gas infrastructure, PNAS, 120 (52) e2310797120, <u>https://doi.org/10.1073/pnas.2310797120</u>, 2023.

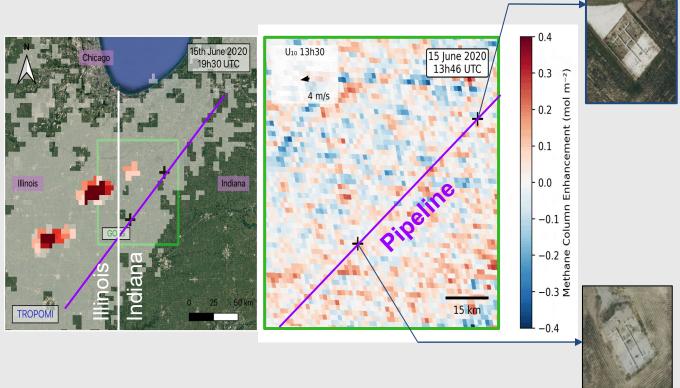
Science Question

Low-Earth orbit satellite instruments observe large methane point sources from super-emitting oil/gas facilities but cannot determine their persistence and often have difficulty with attribution.

Analysis

We showed that GOES-R SWIR channels can be used to detect large methane point sources and track the plumes.

Results


Super-emitters are highly transient and often instantaneous (puffs), indicating deliberate venting rather than equipment failure.

Significance

Attribution and quantification of methane point sources frem LEO can be ambiguous. Continuous monitoring of super-emitters from geostationary orbit would powerfully enable climate action. A slight shift in SWIR bands would make GOES much more effective for this.

Acknowledgements

This research was supported by the NASA Carbon Monitoring System (ROSES2020) under NASA Award number 80NSSC21K1057.

Methane emissions from an Indiana pipeline observed by GOES-R (right). The emissions are synchronized puff releases from pipeline blocking valves (pictures). TROPOMI (left) observes the plumes five hours downwind over agricultural land.