

A human-driven decline in global burned area

Niels Andela^{1,2}, Douglas Morton¹, Louis Giglio³, Yang Chen², Guido van der Werf⁴, James Randerson²

¹ NASA GSFC, ² UC-Irvine, ³ UMD, ⁴ VU Amsterdam

- Satellite data show a 24.3 ± 8.8% decline in global burned area over the past 18 years (Figure 1).
- Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and contributed ~7% to the estimated land carbon sink.
- Agricultural expansion and intensification were primary drivers of declining fire activity (Figure 2).
- Changing fire use in human-dominated landscapes may sustain lower fire activity, with important consequences for the Earth system and biodiversity conservation.

Earth Sciences Division - Hydrosphere, Biosphere, and Geophysics

Morton-01: Long-Term Carbon Consequences of Amazon Forest Degradation